
Testing-based Behavioral Assessment for Service Selection

Martín Garriga1,3, Alan De Renzis1, Andres Flores1,3, Alejandra Cechich1,
and Alejandro Zunino2,3

1 GIISCo Research Group, Facultad de Informática, Universidad Nacional del Comahue
2 ISISTAN Research Institute, UNICEN

3 CONICET (National Scientific and Technical Research Council.

Abstract
Building Service-oriented Applications implies the
selection of adequate services to fulfill required
functionality. Even a reduced set of candidate
services involves an overwhelming assessment
effort. In a previous work we have presented an
approach to assist developers in the selection of
Web Services. In this paper we detail its behavioral
assessment procedure, which is based on
compliance testing. This is done by a specific
Behavioral Test Suite for exposing required
messages interchange from/to a client application
and a Web Service. In addition, helpful information
takes shape to build the needed adaptation logic to
safely integrate the selected candidate into a
Service-oriented Application. A concise case study
shows the potential of this approach for both
selection and integration of a service among a set of
candidates.

Key Words
Service Oriented Applications, Software Testing,
Web Services.

1. Introduction

Service-oriented Applications imply a
business facing solution that consumes
services from one or more providers and
integrates them into the business process.
Certainly, it is not expected to deliver core
enterprise applications purely by
assembling services from multiple sources
[23]. Thus, a Service-oriented Application
can be viewed as a component-based
application that is created by assembling
two types of components: internal that are
locally embedded into the application, and
external that are statically or dynamically
bound to a service [5]. Although developers
of consumer applications do not need to
know the underlying model and rules of a
third-party service, its proper reuse still
implies quite a big effort. On one side, yet
searching for candidate services is mainly a

manual exploration of Web catalogs usually
showing poorly relevant information. On
the other side, even a favorable search
result requires skillful developers to deduce
the most appropriate service to be selected
for subsequent integration tasks. The effort
on assessing candidate services could be
overwhelming. Not only services contracts
must be assessed, but also correct adap-
tations so client applications may safely
consume services while enabling loose
coupling for maintainability.
To ease the development of Service-
oriented Applications we presented in a
previous work [12] a proposal to assist
developers in the selection of services. This
proposal is based on a previous approach in
which we addressed a solution for subs-
titutability of component-based systems
[10]. The approach comprised a selection
method to recognize the most appropriate
third-party candidate component, where the
conventional compatibility assessment was
complemented by using black-box testing
criteria to explore components behavior.
Since Web Services are considered as
software components [16], such selection
method was easily adapted to the Service-
oriented Applications context. The initial
approach was based in the observability
testing metric [10,15] that observes a
component operational behavior by
analyzing its functional mapping of data
transformations (input/output). In the
context of Service-oriented Applications the
observability testing metric has been
discussed in [25,2]. In addition, a proper
service definition entails as a key feature an
operational behavior description, besides its
interface and identifier [17].

Although exploring functional mappings
could be extensive, attending certain
aspects and representative data is more
efficient without neglecting effectiveness.
The choice on testing criteria has been
essential to design a compliance Test Suite
(TS) to represent required service behavior,
namely Behavioral TS. Therefore, a
candidate service is assessed by an
execution behavior process to reveal its
potential compatibility. This selection
method thus reaches a reliable level since a
service compatibility can be confirmed
when the applied testing criteria is
adequately satisfied.
In this paper, we detail the testing-based
behavioral assessment process, in which
helpful information also takes shape to
build the needed adaptation logic to safely
integrate the selected candidate into a
Service-oriented Application. Through a
concise case study we illustrate the
Selection Method showing its usefulness
for both selection and integration of a
service among a set of candidates.
The paper is organized as follows. Next is
described the Selection Method while an
illustrative case study is also introduced.
Section 3 explains the steps to build a
Behavioral TS. Section 4 briefly describes
the Interface Compatibility analysis.
Section 5 describes the Behavioral
Compatibility evaluation. Section 6 details
the case study. Section 7 presents related
work. Conclusions and future work are
presented afterwards.

2. Service Selection Method

During development of a Service-oriented
Application, a developer may decide to
implement specific parts of a system in the
form of in-house components. However,
some internal components could be bound
to reusable Web Services, requiring a
search for candidates.When many services
are discovered a developer still needs to
determine the most appropriate candidate.
Figure 1 depicts our proposal to assist
developers in the selection of Web
Services, which is briefly described as
follows:
The Selection Method needs the definition
of a simple specification, in the form of a
required interface IR (linked to an in-house
component C), as input for its two main
assessment procedures. The Interface
Compatibility analysis is based on a
comprehensive Assessment Scheme to
recognize strong and potential matchings
from IR and the interface (IS) provided by a
candidate service S previously discovered.
The outcome of this step is an Interface
Matching list where each operation from IR
may have a correspondence with one or
more operations from IS.
The Behavioral Compatibility evaluation
analyzes the execution of candidate services
by means of a Behavioral TS, which is built
to describe required messages interchange
from/to a third-party service S. For this
evaluation, the Interface Matching list
produced in the previous step is processed,
and a set of wrappers W (adapters) is
generated. Remote invocations to S are

Figure 1. Testing-based Selection Method

solved through a proxy (PS) derived from
its WSDL description. Thus, a candidate
service is evaluated by executing the TS
against each w∈W, where at least 70%
successful tests must be identified on some
wrapper to confirm a behavior compati-
bility. Besides, such successful wrapper
allows an in-house component (C) to safely
call the candidate service S (trough PS) once
integrated into the client application.
Next sections provide detailed information
particularly related to the testing-based
activities mentioned above. A case study
will be used to illustrate the usefulness of
the Selection Method.

2.1. Case Study

The case study has been outlined as a Mail
Management Application (MMA) being
developed under the Java platform. Figure 2

depicts the component structure of the
application, with the invoking and
coordinating component MMA and the
interfaces for its required key features,
which will be fulfilled by third-party Web
Services. Responsibilities behind these
features are: (1) a Mail Validation tool, to
validate an email address; (2) a Mail
Sending tool, to send emails to one or
multiple receivers, in a blind (bcc) or the
usual (cc) copy mode –emails must include
both their subject and body.
Figure 3 shows a concrete structure for the
required interfaces (IR) of MMA, namely
ValidateMail_IF and Mail_IF. Two sets of
candidate services (one per required
interface) have been built, as presented in
Table 1.
To clearly illustrate the Service Selection
steps, the case study is initially reduced to
the required interface Mail_IF (Figure 3(b))
and one of its candidates: the AtMessaging
service (Figure 4). The evaluation of the
remaining candidate services for the two
required interfaces is presented in Section
6, where the whole case study is developed.

Table 1. Candidate Services for MMA features
Required
Interface

Candidate
Service WSDL Specification URI

EmailVer ws.cdyne.com/emailverify/emailvernotestemail.asmx?WSDL
ValidateEmail api.earnmydegree.com/emailvalidation/validateemailaddress.asmx?WSDL Validate

Mail IF
Email-Verify ws.strikeiron.com/EmailVerify5?WSDL
ATMessaging wd.air-trak.com/atmessagingws/ATMessaging.asmx?WSDL
Communication
Service

local repository Mail IF

cemailService sal006.salnetwork.com:83/lucin/Email/CEmail.xml

Figure 4. Candidate Web Service AtMessaging

Figure 2. Structure of Mail Management
Application (MMA)

(a) IR for Mail Validation

 (b) IR for Mail Sending
Figure 3. Required Interfaces for MMA’s main

features

3. Behavioral Test Suite

To build a TS as a behavioral representation
of services, specific coverage criteria for
component testing has been selected to
fulfill the observability testing metric [10,
15]. A component operational behavior is
observed by exploring its functional
mapping of data transformations
(input/output).
In the context of Service-oriented
Applications, functional mappings imply
messages interchange from/to a client
component C and a third-party service S.
Hence, the goal of this TS is to check that a
candidate service S with interface IS
coincides on behavior with a given
specification described by a required
interface IR (on dependence with C).
Therefore, each test case in TS will consist
of a sequence of calls to IR’s operations,
from where a set of specified expected
results determine acceptance/refusal when
the TS is exercised against S (through IS).
To fulfill the observability testing metric,
the Behavioral TS is based on the all-
context-dependence criterion [15], in which
synchronous events –e.g., invocations to
operations– and asynchronous ones –e.g.,
exceptions– may have sequential depen-
dencies on each other, causing distinct
behaviors according to the order in which
they –i.e., operations or exceptions– are
called. This means, specific messages
interchange from/to a candidate service,
where exceptions are denoted as faults in
terms of WSDL terminology. The criterion
requires to traverse each operational
sequence at least once.
Operational sequences are represented in
our approach with regular expressions,
describing the protocol of use for a service
interface [19]. The alphabet for regular
expressions comprises signatures from
service’s operations. For interested readers,
a complete description of basic coverage
notions is given in [9].
By means of the case study presented in
Section 2.1, the procedure to build a
Behavioral TS is explained next.

3.1. Test Suite for Mail Feature

To build a Behavioral TS for Mail_IF, a
concrete (shadow) class implementing this
interface must be initially created to
describe the required operational behavior.
This shadow class is called Mail and simply
resembles specific behavior in the form of
expected results for some representative test
data, for each operation within the Mail_IF
interface. For example, the operation
sendMail receives as input four Strings
(sender, receiver, subject and body), and
returns a String containing a control data
(success/error).
The expected behavior is checking that the
email is able to be sent to the receiver
address by a successful return code. For this
case study, the test data involve two valid
email addresses (authors personal mails) for
sender/receiver, and the subject and body is
always “hello” and “message” respectively.
The next step implies to define the protocol
of use (in the form of a regular expression).
For Mail could be as follows:

Mail sendMail sendCc* sendBcc*
This regular expression is processed to
derive sentences (describing operational
sequences) according to the number of
calling operations, from where a set of test
templates is generated. In terms of testing,
the kleene (∗) operator implies zero/one and
at least one more occurrence of the operand.
Therefore, the minimum calling operations
in this case study would be 4, producing 6
test templates with one occurrence of
sendMail operation followed by zero/single/
double/combined occurrences of operations
sendCc and sendBcc. Detailed explanations
of this step can be seen in [9].
Next, the test data is combined with the 6
test templates (operational sequences) to
generate the Behavioral TS in a specific
format, based on the MuJava framework
[18]. This combination was based on the
all–combinations algorithm [13], from
where 228 test cases were generated in the
form of methods inside a test driver file
called MuJavaMail.

public String testTS 5 1() {
Mail obtained= null;
obtained = new Mail();
java.lang.String arg1= (java.lang.String) "martin.garriga@fi.uncoma.edu.ar";
java.lang.String arg2= (java.lang.String) "derenzis.alan@gmail.com";
java.lang.String arg3= (java.lang.String) "hello";
java.lang.String arg4= (java.lang.String) "message";
java.lang.String result0= obtained.sendMail(arg1, arg2, arg3, arg4);
java.lang.String arg5= (java.lang.String) "andres.flores@fi.uncoma.edu.ar";
java.lang.String result1= obtained.sendCc(arg1, arg5, arg3, arg4);
java.lang.String arg6= (java.lang.String) "azunino@isistan.unicen.edu.ar";
java.lang.String result2= obtained.sendBcc(arg1, arg6, arg3, arg4);
return " " + result0 + " " + result1 + " " + result2;

 }
Figure 5. MuJava Test Case for Mail

Test cases return a String value that can be
used for a comparative evaluation. Figure 5
shows the test method testTS_5_1, which
exercises the following sequence: Mail,
sendMail, sendCC, and sendBcc.

4. Interface Compatibility

The Interface Compatibility analysis
comprises a practical Assessment Scheme
that consist of two parts: automatic and
semi-automatic matching cases –as shown
in Table 2. Both parts characterize
structural similarity cases into 4 levels of
compatibility to analyze operations from
the interface IS (of a candidate service S),
regarding the required interface IR. Each
compatibility level encloses a set of
equivalence degrees defined as combina-

tions of structural conditions.
Table 3 defines those conditions for
operations signatures (return, name,
parameter, exception). Types on operations
from IS should have at least as much
precision as types on IR. The String type is a
special case, being considered as a wildcard
type since it is generally used in practice to
allocate different kinds of data [21].
Conditions R3 and P4 are the weakest being
evaluated as incompatibilities in the
automatic part of the scheme (treated as R0
and P0 respectively). The semi-automatic
part of the scheme deals with those weakest
conditions –as described in Table 2. Details
of this step can be seen in [12].
The Assessment Scheme in Table 2 is able
to recognize 108 cases of Interface Compa-

Table 2. Assessment Scheme: Automatic and Semi-Automatic Matching Cases
Level Part Constraints
Exact

 Match
Auto

(1 case)
Identical signatures (four identical conditions): [R1,N1,P1,E1]
Equivalence value = 4 (by adding the value 1 of each condition).

Auto
(13 cases)

Three or two identical conditions. Remaining might be second conditions:
(R2/N2/P2/E2). Exceptional cases: three identical conditions with a remaining third
condition (N3/P3/E3). Equivalence values = [5-6].

Near
 Exact
 Match Semi-Auto

(1 case)
Three identical conditions with return that may have a not equivalent complex type
or lost precision: [R3,N1,P1,E1]. Equivalence value = 6.

Auto
(26 cases)

Similar to previous level, but only two identical conditions. Previous exceptional
cases may occur with lower conditions. Equivalence values = [7-8]. Soft

 Match Semi-Auto
(13 cases)

Two identical conditions, similar to automatic. Either return or parameter (not
both) with a nonequivalent complex type or lost precision (R3/P4).
Equivalence values = [7-8].

Auto
(14 cases)

There cannot be two identical conditions, i.e., all conditions can be relaxed
simultaneously. Equivalence values = [9-11]. Near

 Soft
 Match Semi-Auto

(40 cases)
Either two identical conditions with P4 or relaxing all conditions simultaneously
(with R3/P4). Equivalence values = [9-13].

compGap(IR,IS)= Σi=1 Min(opRi,MapComp(IR,IS)) − 1
 N ∗ 4

N
(1)

where N is the interface’s size of IR, and MapComp are the values for the compatibility cases found for
operation opRi.

tibility (each part comprises 54 cases).
When certain mismatch cases are detected
for IR, a developer may outline a likely
solution using context information from the
application’s business domain. We have
identified specific cases in which a concrete
compatibility can be set up by a semi-
automatic mechanism. In addition, for a
specific operation opR ∈ IR, there could be
another correspondence that better fits for
the application’s context. Then, a developer
is enabled to “prioritize” such correspon-
dence even when an automatic match was
identified. Besides, the success on the
precision achieved during this step is
essential to reduce computation effort for
the subsequent step of Behavioral
Compatibility evaluation (see Section 5).
The final outcome of this step is an
Interface Matching list, in which for each
operation opR ∈ IR, a list of compatible
operations from IS is shaped. For instance,
let be IR with three operations opRi, 1≤ i ≤3,
and IS with five operations opSj, 1≤ j ≤5.
The Interface Matching list might result as
follows:

{ (opR1, {opS1, opS5}), (opR2, {opS2, opS4}),
(opR3, {opS3}) }

Compatibility cases represent specific
numeric values on the Assessment Scheme
in Table 2 –e.g., the value of exact
equivalence is 4. Therefore, from the
Interface Matching list, a totalized
equivalence value can be calculated to
synthesize the achieved degree of Interface
Compatibility between IR and IS. Only the
highest compatibility level for each
operation is considered to calculate that
value, named Compatibility Gap, according
to formula (1).

4.1. Interface Compatibility for Mail
Feature

Table 4 shows the Interface Compatibility
analysis for Mail_IF and the AtMessaging
service. As can be seen, the same operation
sendSMTPMail of the AtMessaging service
matches the three operations from Mail_IF:
sendMail, sendBcc and sendCc with a near-
exact_12 equivalence. They coincide on
parameters and exceptions, with a subtype
for return and a substring for operations
names –i.e., the conditions [R2,N2,P1,E1] in
Table 3.
In fact, the two last correspondences could
be quite reasonable considering that after
sending the main email copy, additional

Table 3. Structural Operation Matching Conditions for Interface Compatibility

R0: Not compatible R1: Equal return type
R

et
ur

n
R2: Equivalent return type (subtyping, Strings
or Complex types)

R3: Non equivalent complex types or lost precision

N0: Not compatible N1: Equal operation name

N
am

e

N2: Equivalent operation name (substring) N3: Operation name ignored
P0: Not Compatible P1: Equal amount, type and order for parameters
P2: Equal amount and type for parameters

Pa
ra

m
et

er
s

P4: Nonequivalent complex types or lost
precision

P3: Equal amount and type at least equivalent (including
subtyping, Strings or Complex types) for some
parameters into the list

E0: Not compatible E1: Equal amount, type, and order for exceptions

Ex
ce

p-
tio

ns

E2: Equal amount and type for exceptions
into the list.

E3: If non-empty original’s exception list, then non-
empty candidate’s list (no matter the type).

copies (Cc/Bcc) could also be iteratively
sent with a similar procedure afterwards.
The total compatibility value between
Mail_IF and the AtMessaging service is 18.
This means, the compatibility gap can be
calculated as: 18/12−1=0.5 according to
formula (1). Although all operations from
the required interface Mail_IF found a match,
a conclusive decision to accept/discard the
AtMessaging service must be made through
the subsequent step of Behavioral
Compatibility evaluation.

5. Behavioral Compatibility Evaluation

This step helps to differentiate from
structurally similar operations, mainly
assuring that interface correspondences also
match at the behavioral level by providing
the required functionality. The purpose is
finding operations from a candidate service
S that expose a similar behavior with
respect to those specified in the required
interface IR. In our approach, this implies to
exercise the Behavioral TS against the
candidate service S.
The Interface Matching list is used to build
a wrappers’ set W for the candidate service
S. Wrappers are based on the adapter
pattern [11] simply forwarding requests to
the candidate service S (through IS). The
size of W derives from combinations of
operations matching. Instead of making a
blind combination, a reduced number can
be reach from the best correspondences in
the Interface Matching list.
The wrapping approach makes use of
Interface Mutation [14,7] by applying
mutant operators to change invocations to
operations and parameter values. The
former is done through the list of matching
operations. The latter, by varying
arguments with the same type, for a given

operation correspondence. If the size of W
is too high, a developer may decide to
either manually set correspondences for
building just one wrapper or generate a
manageable subset of wrappers.
Since the Behavioral TS will be finally
executed against a candidate service S, then
an additional consideration implies the
physical connection to S to enable invoking
operations exhibited in IS. Thus, a proxy for
S (PS) is generated, from where the
Behavioral TS will end up invoking the
operations declared in IS through PS, which
then invokes the remote service S.
After building wrappers, the testing step
may proceed by taking each wrapper as the
target testing class and executing the
Behavioral TS. Test cases evaluation is
done by means of the returned String value –
e.g., the test case in Figure 5– which thus
gives a binary result: success/failure. The
percentage of successful tests for each
wrapper determines its acceptance/refusal –
i.e., either killing the wrapper (as a
mutation case) or allowing it to survive.
The greater the killed wrappers the better,
because it makes easy to conclude
(in)compatibility for a candidate service.

5.1. Running TS of Mail on AtMessaging

To initiate the Behavioral Compatibility
between Mail_IF and AtMessaging, the
Interface Matching list from the previous
step must be processed to build the set of
wrappers (W). A Wrapper Generation Tree
is created, where each level of the tree adds
the set of correspondences for a different
operation of Mail_IF, as shown in Figure 6.
Each path from the root to a leaf node
represents a different wrapper to be
generated. Notice that for all matchings
between Mail_IF and AtMessaging the P1

Table 4. Interface Compatibility between Mail_IF and AtMessaging

Mail_IF AtMessaging Degree Case Conditions Value
sendBcc sendSMTPMail n-exact_12 13 R2, N2, P1, E1 6
sendCc sendSMTPMail n-exact_12 13 R2, N2, P1, E1 6

sendMail sendSMTPMail n-exact_12 13 R2, N2, P1, E1 6
Total best value: 12 (based on Mail_IF size) Total Equivalence 18

Figure 6. Wrapper Generation Tree for Mail_IF and AtMessaging

Figure 7. Structure of Service Wrappers to test a candidate service S (AtMessaging)

condition was found, implying a
coincidence on parameters’ type and order
–as defined in Table 3.
This means, initially just one wrapper could
be generated, corresponding to the first path
(to the left) from the tree in Figure 6 –i.e.,
wrapper0. However, all operations of Mail_IF
includes 4 String parameters, which may
imply permutations when the parameters
order is not considered. This could be done
to find an adequate arrangement of
parameters that might result in a successful
wrapper, in case wrapper0 is killed (as a
mutation case). Permutations rises to 24 for
each level, making the whole number of
wrappers to be 24∗24∗24=13824. Although
this wrappers’ set becomes unwieldy to be
tested, a partial generation can be
performed. Therefore, initially a subset
(W1) of 24 wrappers was generated as a
result of this step –from wrapper0 to
wrapper23.
To run the Behavioral TS (MujavaMail)
against the wrappers’ set a specific structure
(with a proxy for remote calls to the
AtMessaging service) must be created, as

shown in Figure 7. After this, the MujavaMail
test file can be run against the subset (W1)
of 24 wrappers. In this case, only wrapper0
passed successfully the tests, which
confirms the expected behavior specified
for the required interface Mail_IF.
Details of the whole case study, involving
the remaining candidate services, are given
in the following section.

6. Details of the Case Study

This section details the evaluation
procedure for the whole case study about
the Mail Management Application (MMA)
presented in Section 2.1. The evaluation
procedure for the Mail functionality is
described in Section 6.1. Then a synthesis
from evaluating the Mail Validation
functionality is presented in Section 6.2.

6.1. MMA - Mail Sending Feature

Since the AtMessaging candidate service was
taken for an initial example in the previous
sections, only the remaining candidates are
analyzed below.

Candidate CommunicationService:
When analyzing on Interface Compatibility,
no matching was found for operations of
the required interface Mail_IF and the
CommunicationService candidate. Although
this candidate provides one operation to
send emails, it makes use of a complex type
(namely Mail), which does not coincide with
the email definition of Mail_IF. Hence, this
candidate is considered as incompatible
regarding Mail_IF.

Candidate cemailService:
The Interface Compatibility analysis of the
cemailService candidate involves a similar
result to the AtMessaging service. Only one
operation (sendAnonymousEmail) matches
the three operations from Mail_IF with a
near-exact_12 equivalence. However, the
sendAnonymousEmail operation presents a
Boolean return type that matches the String
wildcard type of Mail_IF operations.

For the Behavioral Compatibility evalua-
tion, the number of wrappers could be
overwhelming, similarly to the AtMessaging
service. Again, the decision is to generate
only a subset (W2) of the whole wrappers’
set –from wrapper0 to wrapper23. After
running the MujavaMail TS against W2, all
wrappers failed the tests. The reason is that
the Boolean return value (true/false) is
casted to String (“true”/“false”) as defined in
Mail_IF. However, the expected return
values (for the shadow class) are numeric
codes (“1”:success/“-1”:error). Therefore,
executing the TS against any wrappers’
subset (Wi) of cemailService will always fail
due to the return type. Hence, the
cemailService candidate is not considered as
an eligible service.

Web Service Selection for Mail_IF:
From the previous results the only
candidate that successfully passed all

evaluation procedures is the AtMessaging
service. Hence, the successful wrapper0 of
this service (identified in Section 5.1) could
be used to allow the MMA application to
safely call the selected AtMessaging service.

6.2. MMA - Mail Validation Feature

For each candidate to fulfill the required
interface ValidateMail_IF, meaningful details
of acceptance/rejection are explained
below.

Candidate EmailVer:
When analyzing on Interface Compatibility,
no matching was found for operations of
the required interface ValidateMail_IF and the
EmailVer service. Particularly, the candidate
provides an operation to validate mail
addresses including an additional parameter
(licenseKey) that results in a mismatch by
the P0 condition (in Table 3). Hence, the
EmailVer service can be discarded as a
candidate.

Candidate Service: EmailVerification
Similarly to the previous candidate,
nomatching was found for the Email-
Verification service due to a P0 condition.
Hence, this candidate is considered as
incompatible regarding ValidateMail_IF.

Candidate ValidateEmail:
When running the Interface Compatibility
analysis for the ValidateEmail service, two
matchings were found for operation
isValidMail to operations isValidEmail and
isValidEmailAddress, both with a near-
exact_12 equivalence –as shown in Table 5.
Therefore, the total compatibility value is 6,
from where the compatibility gap value can
be calculated as: 6/4−1=0.5 according to
formula (1).

After this, the ValidateEmail service is
suitable to continue with the Behavioral

Table 5. Interface Compatibility between ValidateMail_IF and ValidateEmail

ValidateMail_IF ValidateEmail Degree Case Conditions Value
isValidEmail n-exact_12 13 R2, N2, P1, E1 6 isValidMail

isValidEmailAddress n-exact_12 13 R2, N2, P1, E1 6
Total best value: 4 (based on ValidateMail_IF size) Total Equivalence 6

Compatibility step. According to the
procedure in Section 3 a Behavioral TS was
built, with the authors personal mails as test
data, from where 4 test cases were created
enclosed in a test driver file named
MujavaValidate. Next, the wrappers’ set was
generated (as explained in Section 5)
containing two wrappers, namely wrapper0
and wrapper1.
After running the MujavaValidate TS, the 2
wrappers successfully passed the tests.
Therefore, either one of both wrappers
could be used as the artifact to integrate the
ValidateEmail service into the MMA
application. A detailed analysis from the
WSDL description of such candidate shows
that both operations provide the same
behavior, but implemented by different end
points (URIs). Hence, this increases the
availability of this service, allowing calls to
any end point through the corresponding
wrapper.
Interestingly, changes between both
wrappers into the Mail Management
Application could be transparently done
without affecting its client coordinating
component (MMA).

A final remark about performance of the
Selection Method. This case study was
done on a regular Pentium 1.83GHz 2GB
RAM, where the TS was generated in about
1.5 minutes, and the step of Interface
Compatibility is done in about 1 minute.
The generation of both subsets of 24
wrappers required 2.5 minutes and the
execution of the TS against both wrappers’
subsets was done in about 25.5 minutes.

7. Related Work

Due to lack of space this section briefly
presents related work without a detailed
comparison with our approach.
The work in [8] is very close to our goals.
The approach intends to evaluate compati-
bility for services with two purposes:
substitutability and composability. The
evaluation is based on input/output data
registered after testing individual operations
for each candidate service. A different TS is

built for each service to be evaluated, which
is based on a selected input data (either
randomly or manually).
Another work based on testing individual or
atomic services’ operations is presented in
[24], which implies a specification-based
strategy by means of OWL-S.
The work in [4] is concerned with
substitutions of inoperable services with
compatible ones. Automatically finding
optimal solutions implies the challenging
issue of how to discern the behavior of
services. The approach attempts to discover
and comprehend services’ behavior and
classify them into clusters by means of
compliance testing.
The work in [25] is concerned with the
improvement of test efficiency during
service selection and composition, focusing
in dependability and trustworthiness issues.
A framework is proposed to support group
testing, applied over a set of atomic services
that could be potential parts of a service
composition.
Another work [27] is intended to cope with
Web Service testing. A collaborative testing
framework has been proposed, where
testing tasks are performed through the
collaboration of various test services (T-
services) that are registered, discovered and
invoked at runtime using an ontology of
software testing called STOWS. The
proposed framework verifies a proper
service execution through strategies to find
faults, and also using a semantic Web
Service approach.
For further references other important
related work about testing service-oriented
systems is summarized in [3,20,1].

8. Conclusions and Future Work

In this paper we have presented an
approach to assist developers in the
selection of services, when developing a
Service-oriented Application. Particularly,
our approach addresses two main aspects:
confirming the suitability of a candidate
service by a dynamic behavioral evaluation
(execution behavior), and attending a
pragmatic issue related to the required

testing task that inevitably follows any
integration process.
Our current work implies test selection for
the Behavioral TS, for which we are
applying minimization strategies to
structure a manageable set of test cases. A
straightforward solution is designing a
reduced TS based on the result of the
Interface Compatibility step. Test cases
could be generated only for operations
without a single structural matching. This
avoids executing the whole TS against the
wrappers’ set built in the Behavioral
Compatibility step.
Another concern implies the scalability
upon generation and management of
wrappers (as mutation cases). To deal with
this, only those wrappers (or even a unique
wrapper), with a major probability of
success can be generated to substantially
reduce the computation effort. In addition,
we are exploring Information Retrieval
techniques to get more precision in
analyzing concepts from interfaces –e.g.,
semantic equivalence in parameters and
operations names.
Finally, we will address the composition of
candidate services, which is particularly
useful when an atomic candidate service
cannot fulfill the whole required
functionality.
We will extend the current procedures and
models mainly based on business process
descriptions and service orchestration [22,
26,6].

Acknowledgments

This work is supported by projects: PICT 2012-0045
and UNCo–Reuse(04-F001).

References

1. Bozkurt, M., Harman, M., Hassoun, Y. Testing
and Verification in Service-Oriented
Architecture: A Survey. Software Testing,
Verification Reliability, 23(4): 261-313 (2013)

2. Brenner, D., Paech, B., Merdes, M., Malaka, R.
Web Technologies: Concepts, Methodologies,
Tools, and Applications, chap. Enhancing the
Testability of Web Services. IGI Global (2010)

3. Canfora, G., Di Penta, M. Service Oriented
Architectures Testing: A Survey. ISSSE 2006-
2008, LNCS(5413): 78–105 (2009), Springer.

4. Church, J., Motro, A. Learning Service
Behavior with Progressive Testing. IEEE
SOCA’11. Irvine, USA (December 2011)

5. Crasso, M., Mateos, C., Zunino, A., Campo, M.
EasySOC: Making Web Service Outsourcing
Easier. Information Sciences, Special Issue:
Applications of Computational Intelligence &
Machine Learning to Soft. Eng. (2010), in press

6. Daniel, F., Pernici, B. Insights into Web Service
Orchestration and Choreography. International
Journal of E-Business Research, 2(1): 58–77
(2006)

7. Delamaro, M., Maldonado, J., Mathur, A.
Interface Mutation: An Approach for
Integration Testing. IEEE Transactions on
Software Engineering, 27(3): 228–247 (March
2001)

8. Ernst, M., Lencevicius, R., Perkins, J. Detection
of Web Service Substitutability and
Composability. International Workshop on Web
Services - Modeling and Testing. pp. 123–135.
(June 2006)

9. Flores, A., Polo, M. Testing-based Process for
Component Substitutability. Software Testing,
Verification and Reliability, Wiley Online
Library, 22(8): 529–561. (December 2012).

10. Freedman, R.S. Testability of Software
Components. IEEE Transactions on Software
Engineering, 17(6): 553–564 (June 1991)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley (1995)

12. Garriga, M., Flores, A., Cechich, A., Zunino, A.
Practical Assessment Scheme to Service
Selection for SOC-based Applications. SADIO
Electronic Journal (EJS) – Special Issue
dedicated to ASSE 2011, 11(1): 16–30
(September 2012)

13. Grindal, M. et al. Combination Testing
Strategies: a survey. Software Testing,
Verification and Reliability, 15(3): 167–199
(2005)

14. Gosh, S., Mathur, A.P. Interface Mutation.
Software Testing, Verification and Reliability,
11(4): 227–247 (2001)

15. Jaffar-Ur Rehman,M. et al. Testing Software
Components for Integration: a Survey of Issues
and Techniques. Software Testing, Verification
and Reliability, 17(2): 95–133 (June 2007)

16. Kung-Kiu, L., Zheng, W. Software Component
Models. IEEE Transactions on Software
Engineering, 33(10): 709–724 (October 2007)

17. Massuthe, P., Reisig, W., Schmidt, K. An
Operating Guideline Approach to the SOA.
Mathematics, Computing & Teleinformatics
(2005)

18. μJava Home Page: Mutation system for Java
programs (2008), http://www.cs.gmu.edu/
offutt/mujava/

19. OMG: Unified Modeling Language:
Superstructure version 2.0. Tech. Rep., Object
Management Group, Inc. (2005),
http://www.omg.org

20. Palacios, M., Garcia-Fanjul, J., Tuya, J. Testing
in Service Oriented Architectures with Dynamic
Binding: A Mapping Study. Information and
Software Technology, Elsevier, 53(3): 171–189
(March 2011)

21. Pasley, J. Avoid XML Schema wildcards for
Web Service Interfaces. IEEE Internet
Computing, 10(3): 72–79 (2006)

22. Peltz, C. Web Services Orchestration and
Choreography. IEEE Computer, 36(10): 46–52
(2003)

23. Sprott, D., L., W. Understanding Service-
Oriented Architecture. The Architecture
Journal. MSDN Library. Microsoft Corporation
1, 13 (January 2004),
http://msdn.microsoft.com/enus/library/aa48002
1.aspx

24. Tsai,W., Chen, Y., Paul, R. Specification-based
Verification and Validation of Web Services and
Service-oriented Operating Systems. IEEE
International Workshop on Objectoriented Real-
time Dependable Systems. pp. 139–147.
(February 2005)

25. Tsai,W., Zhou, X., Chen, Y., Bai, X. On Testing
and Evaluating Service-Oriented Software.
IEEE Computer, 41(8): 40–46 (2008)

26. Weerawarana, S.; et al. Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL,WS-Reliable Messaging,
and More. Prentice Hall PTR (2005)

27. Zhu, H., Yufeng, Z. Collaborative Testing of
Web Services. IEEE Transactions on Services
Computing, 5(1): 116–130 (2010)

Contact Information

Martín Garriga:
GIISCo Research Group, Facultad de Informática,

Universidad Nacional del Comahue, Neuquén,
Argentina.

CONICET (National Scientific and Technical
Research Council), Argentina.

Email: martin.garriga@fi.uncoma.edu.ar

Alan De Renzis:
GIISCo Research Group, Facultad de Informática,

Universidad Nacional del Comahue, Neuquén,
Argentina.

Email: derenzis.alan@gmail.com

Andres Flores:
GIISCo Research Group, Facultad de Informática,

Universidad Nacional del Comahue, Neuquén,
Argentina.

CONICET (National Scientific and Technical
Research Council), Argentina.

Email: andres.flores@fi.uncoma.edu.ar

Alejandra Cechich:
GIISCo Research Group, Facultad de Informática,

Universidad Nacional del Comahue, Neuquén,
Argentina.

Email: alejandra.cechich@fi.uncoma.edu.ar

Alejandro Zunino:
ISISTAN Research Institute, UNICEN, Tandil,

Argentina.
CONICET (National Scientific and Technical

Research Council), Argentina
Email: azunino@isistan.unicen.edu.ar

